

Visual Computing in praktischen Anwendungen

G. Zachmann

zach@cs.uni-bremen.de

http://cgvr.cs.uni-bremen.de/

Visual Computing

Visual Computing

Virtual Reality

Collision Detection

Inner Sphere Trees

Hand Tracking

Conclusion

Applications of Virtual Reality

Virtual wind tunnel

[with Volkswagen]

Ergonomic studies

[with BMW]

Assembly simulation

[with BMW]

[with BMW]

One of Our Research Themes

- Approaches for un-intrusive, natural, direct, and physically plausible interaction with virtual environments
 - In particular, direct manipulation of virtual objects using the virtual hand

"...the toughest part for us to achieve in practice seems to be the realistic interaction."

[Jim Foley: Top Ten Problems in CG, IEEE CG&A]

Collision Detection & Response

- Rigid & deformable bodies
- Probabilistic coll.det. (time-critical)
- Kinetic bounding volume hierarchies
- Point cloud intersections
- Massively parallel sorting on the GPU (optimal depth & work complexity)

Inner Sphere Trees (ISTs)

- Basic idea: fill object from inside with non-overlapping inner bounding volumes
- Sphere Packing (multimodal)
 - Could be other BVs, too
- Goal: dense packing & few spheres
- Advantages:
 - Computes separation distance and penetration volume in a few milliseconds
 - Can do so with the same algorithm
 - Penetration volume = water displacement → new approach to computing haptic forces

Prototype-based massively-parallel algorithm on GPU

[Siggraph Asia sketches]

Application: Collaborative Haptic Workspace

12 moving objects; 3.5M triangles; 1 kHz simulation rate; intersection volume ≈ 1-3 msec

Camera-Based Articulated Object Tracking

- Goal: markerless tracking of human hand with cameras in real-time
 - High-dimensional configuration space (26 DOFs)
 - Determine global hand position and orientation in 3D space (6 DOF's)
 - Determine hand pose, i.e., angles of finger joints (20 DOF's)

Conclusion

Hand Tracking

Visual Computing Virtual Reality Collision Detection Inner Sphere Trees

A Segmentation-Free Approach

Visual Computing

Virtual Reality

Collision Detection

Inner Sphere Trees

Hand Tracking

Conclusion

Fast Area-Based Template Matching

- Novel representation for templates: rectangle coverings
- Benefits:
 - Matching time no longer depends on image or template resolution
 - Speedup = 10-25 x
 - Easy to turn into hierarchical matching algorithm → complexity = O(log n) for n templates!

One Possible Application: Touch-less Control of Robots

With DLR, Oberpfaffenhofen: touch-less hand-based control of the surgery robot MiroSurge

G. Zachmann,

zach@cs.uni-bremen.de,

http://cgvr.cs.uni-bremen.de/

Visual Computing

Virtual Reality

Collision Detection

Inner Sphere Trees

Hand Tracking

Conclusion