T 6 Taupunktbestimmung

Aktivieren der Eingänge:

Zum Aktivieren der Sensoreingänge U_{A1} (Solarzelle) und U_{B1} (Spannung über dem $1k\Omega$ Widerstand) mit der Maus auf den jeweiligen Kanal klicken.

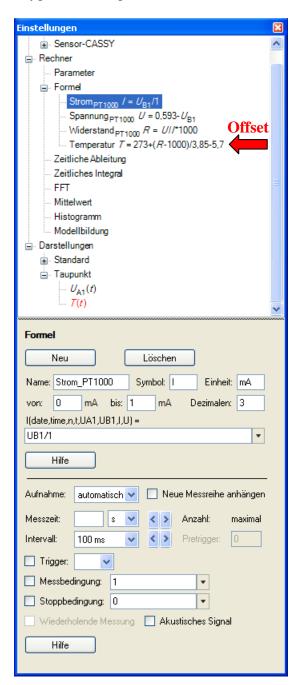
Einstellungen am Sensoreingang:

Legen Sie einen geeigneten Messbereich fest.

 $U_{\rm A1}=$ -1V .. 1V

 $U_{\rm B1} = -0.3 \rm V ... 0.3 \rm V$

Wählen Sie bei beiden Eingängen gemittelte Werte.


Messparameter:

Die Messparameter können in der Standardeinstellung bleiben.

T6 T6

Berechnung der Temperatur:

Unter **Einstellungen** > **Rechner** > **Formel** > **Neu** kann eine neue Größe berechnet werden. In dem Feld Formel erfolgt die Berechnung der Temperatur. Es ist einfacher und nachvollziehbarer, alle 4 nachfolgenden Formeln nacheinander als **neue Größe** zu definieren. Beim Vergleich von berechneter Raumtemperatur und angezeigter Raumtemperatur (Hygrometer) ergibt sich ein Offset hier –5,7K.

Strom durch PT1000:

 $I = U_{\rm B1} / 1 \,\mathrm{k}\Omega$ (I in mA)

Spannung über PT1000:

 $U = U_{\text{Poti}}$ (Multimeter) $-U_{\text{B1}}$

Widerstand PT1000:

 $\mathbf{R} = \mathbf{U} / \mathbf{I} * 1000 \quad (\mathbf{R} \text{ in } \Omega)$

Temperatur PT1000:

 $T = 273 \text{K} + (R - 1000\Omega) / 3,85 \Omega/\text{K}$

Darstellung:

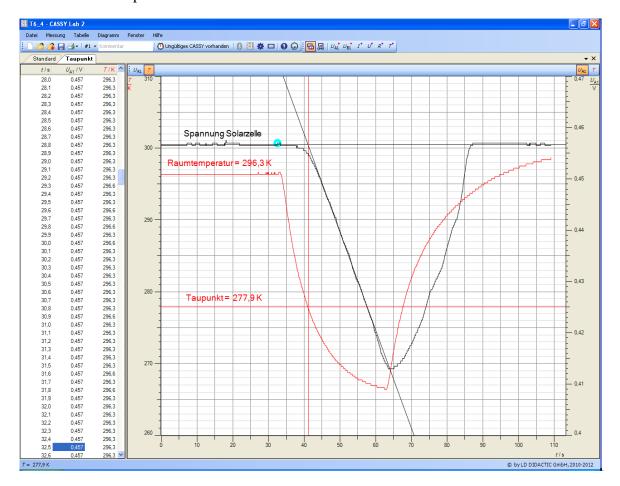
Unter Einstellungen > Darstellungen > Neu > Neue Kurve hinzufügen werden die beiden Kurven $U_{A1}(t)$ und T(t) in einer Grafik dargestellt.

T6

Bestimmung des Taupunktes:

Durch einen rechten Mausklick neben die Diagrammachsen kann das Diagramm skaliert werden.

Mit den Auswertemöglichkeiten (rechter Mausklick in der Grafik)


Mittelwert einzeichnen

Anpassung durchführen > Ausgleichsgerade

Markierung setzen > Senkrechte o. Waagerechte Linie

Markierung setzen > Text

lässt sich der Taupunkt bestimmen.

